As a rule of thumb, small fibres tend to be used where control of crack propagation is the most important design consideration. High fibre count (number of fibres per kg) permits finer distribution of steel fibre reinforcement throughout the matrix and consequently, greater crack control during drying process. On the other hand, because they exhibit better matrix anchorage at high deformations and large crack widths, longer, heavily deformed fibres afford better post-crack "strength". However, unlike shorter fibres, the dramatically reduced fibre count of longer product yields correspondingly less control of initial crack propagation.
You will get efficient and thoughtful service from well.
When steel fibres are added to mortar, Portland cement concrete or refractory concrete, the flexural strength of the composite is increased from 25% to 100% - depending on the proportion of fibres added and the mix design. Steel fibre technology actually transforms a brittle material into a more ductile one. Catastrophic failure of concrete is virtually eliminated because the fibres continue supporting the load after cracking occurs. And while measured rates of improvement vary, Steel fibre reinforced concrete exhibits higher post-crack flexural strength, better crack resistance, improved fatigue strength, higher resistance to spalling, and higher first crack strength, Figure 2 shows concrete flexural strengths when reinforced at various fibre proportions. Additionally, deformed fibres provide a positive mechanical bond within the concrete matrix to resist pull-out. Steel fibres are available in lengths from 38 mm to 50 mm and aspect ratios between 40 and 60. The fibres are manufactured either deformed or hook end, and conform to ASTM A-820.
Conventional practice usually concentrates welded wire fabric reinforcement within a single plane of a floor slab. Fabric does very little to reinforced the outer zones, which is why spalling is common at the joints and edges. The primary function of welded wire fabric is to hold the floor slab together after the first small hairline cracks have propagate to larger fractures. This serves to maintain some degree of "structural integrity". Conventional wisdoms approach to floor slabs is to maintain "material integrity" through SFRC mix designs. This integrity is accomplished by:
Industrial Ground Floor Slabs Warehouses, Factories, Aircraft Hangers, Roads, Bridge Decks, Parking Areas, Runways, Aprons and Taxiways, Commercial and Residential Slabs, Piling, Shotcrete, Tunnels, Dams and stabilisation.
The company is the world’s best Steel Fibers supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.
Steel fibre reinforced concrete is a castable or sprayable composite material of hydraulic cements, fine, or fine and coarse aggregates with discrete steel fibres of rectangular cross-section randomly dispersed throughout the matrix. Steel fibres strengthen concrete by resisting tensile cracking. Fibre reinforced concrete has a higher flexural strength than that of unreinforced concrete and concrete reinforced with welded wire fabric. But unlike conventional reinforcement which strengthens in one or possibly two directions Steel fibres reinforce iso tropically, greatly improving the concretes resistance to cracking, fragmentation, spalling and fatigue. When an unreinforced concrete beam is stressed by bending, its deflection increases in proportion with the load to a point at which failure occurs and the beam breaks apart. This is shown in Figure 1. Note that the unreinforced beam fails at point A and a deflection of B. A Steel fibre reinforced beam will sustain a greater load before the fist crack occurs (point C). It will also undergo considerably more deflection before the beam breaks apart (point D). The increased deflection from point B to point D represents the toughness imparted by fibre reinforcement. The load at which the first crack occurs is called the "first crack strength". The first crack strength is generally proportional to the amount of fibre in the mix and the concrete mix design.
Two theories have been proposed to explain the strengthening mechanism. The first proposes that as the spacing between individual fibres become closer, the fibres are better able to arrest the propagation of micro cracks in the matrix. The second theory holds that the strengthening mechanism of fibre reinforcement relates to the bond between the fibres and the cement. It has been shown that micro cracking of the cement matrix occurs at very small loads. Steel fibres, then service as small reinforcing bars extending across the cracks. So as long as the bond between the fibres and cement matrix remains intact the Steel fibres can carry the tensile load. The surface area of the fibre is also a factor in bond strength. Bond strength can also be enhanced with the use of deformed fibres, which are available in a variety of sizes.
The proportions of Steel fibres in mix designs usually range from 0.2% to 2.0% (15 to 150 kg/m3 ) of the composites volume. Key factors to consider largely depend on the application under consideration and/or the physical properties desired in the finished project. Mix designs with fibre proportions above 60kg/m3 are usually adjusted to accommodate the presence of millions of steel fibre reinforcing elements. The adjustments are an increase in the cement factor, a reduction in the top size of the coarse aggregate and the addition of a super plasticiser. Prototype testing is recommended to determine the optimum design for each application.
Steel fibers mixed into the concrete can provide an alternative to the provision of conventional steel bars or welded fabric in some applications. The concept has been in existence for many years (the first patent was applied for in ), and it has been used in a limited range of applications: among the first major uses was the patching of bomb craters in runways during World War II. However, it was during the s that commercial use of this material began to gather momentum, particularly in Europe, Japan and the USA.
Today, industrial floors and pavements are major applications for steel-fiber-reinforced concrete. In the United Kingdom, several million m2 of steel-fiber-reinforced slabs have been installed over the past ten years, both for ground-supported and pile-supported floors. Other major applications for fiber-reinforced concrete include external paved areas, sprayed concrete, composite slabs on steel decking and precast elements.
Fibers are often used to replace the nominal conventional steel fabric in ground bearing slabs. Steel fibers are increasingly being used in suspended ground floor slabs on piles to replace much, and in many cases all, of the reinforcement. Savings in the cost of supplying and fixing the conventional welded fabric reinforcement that is replaced can offset the extra cost of adding fibers to the concrete. There may also be health and safety benefits resulting from the reduced handling of reinforcement. Also, problems caused by the misplacement of conventional steel in the depth of the slab are avoided.
If you are looking for more details, kindly visit Melt Extract Steel Fiber.